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Abstract
We derive a generalized model for isotropic as well as anisotropic crystal lattice systems of
arbitrary Poisson ratio within the framework of the continuum phase-field crystal (PFC)
approach (Elder and Grant 2004 Phys. Rev. E 70 051606). To this end we extend the simplest
PFC model defined by a free energy functional, which is based upon the Swift–Hohenberg
model of pattern formation (Swift and Hohenberg 1993 Phys. Rev. A 15 851) to a conservative,
anisotropic Langevin equation. By studying heterogeneous nucleation of ellipsoidal colloids at
a wall, we demonstrate the capacity of our approach to contribute to the more precise
understanding of condensed matter systems built up from non-spherical units at the atomic
scale. In particular we address the question of how (a) the orientation of the ellipsoids as well as
(b) the interaction potential with the wall determine the resulting contact angle.

1. Introduction

Over the past decades phase-field modeling has become an
accepted model approach for studying the dynamics of systems
out of equilibrium. In particular it has found numerous
applications in materials science [1–4]. A classical example
of such an application is solidification: consider a material
that is disordered at high temperature and has two stable
phases at low temperatures. Upon quenching the material
from a high to a low temperature, grains of different stable
phases will develop and evolve in competition with each other.
Phase-field modeling is able to describe the time evolution
of such a process. To do so, a continuous function of space
and time φ(x, t) is introduced—namely the phase-field—that
assumes a different constant value for both stable phases. Close
to an interface between two grains, the value of φ changes
rapidly. The phase-field variable introduced in the context
of this example can be interpreted as an order parameter
to represent the relative mass fraction of both phases. It
allows us to model and simulate the dynamics of interfaces,
that change their topology during evolution in time—so-called
Stefan problems [5]—elegantly, i.e. without the need to track
that interface explicitly. Phase-field models are based the

following Landau form of a free energy functional

F1[φ] =
∫

V

[
ε2

2
| �∇φ|2 + f (φ)

]
dV . (1)

From (1) the dynamical evolution of the field equation can be
derived via a variation of the form

∂φ

∂ t
= ∇2 δFi

δφ
(2)

or
∂φ

∂ t
= −δFi

δφ
, (3)

depending on whether φ can be assumed to be locally con-
served (equation (2)) or locally non-conserved (equation (3)).

A functional of form (1) applies if the stable states of
the system under investigation are locally uniform. If this
assumption is not valid, an appropriate energy functional is
given by

F =
∫

V

(
1

2
φ[(q2

0 + ∇2)2 − ε]φ + 1

4
φ4

)
dr, (4)

with now two phenomenological parameters q0 and ε. Again
an equation of motion can be derived based on the variational
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principle (2). This results in the simplistic formulation of
the so-called phase-field crystal method, a recent extension of
the phase-field method to the atomic scale originally derived
in [6]. It is motivated by the Swift–Hohenberg equation [15]
formulated to describe systems, where the stable states are
periodic such as, for example, the case for Rayleigh–Bénard
convection. Since its introduction, the phase-field crystal
(PFC) method [6–8, 10, 11] has emerged as a computationally
efficient alternative to molecular dynamics (MD) simulations
for problems where the atomic and the continuum scale are
tightly coupled. The reason is that it operates for atomic length
scales and diffusive timescales. Thus for a simple application
such as diffusion in gold or copper it runs 106–108 times faster
than the corresponding MD calculation [12]. In that sense
it provides, from the point of view of multiscale materials
modeling, an interesting link between the phase-field method
and MD. Moreover, a connection between classical density
functional theory of freezing and phase-field crystal modeling
could be identified in [8, 9]. Thereby a second theoretical
foundation besides the Swift–Hohenberg amplitude equation
approach could be established. Essentially it motivates the
application of PFC models also for spatially non-uniform non-
periodic states.

Recently the phase-field crystal method has been applied
to a variety of different growth phenomena. One of its
interesting features is that other than the phase-field method,
in which elasticity explicitly needs to be integrated in the
functional to be taken into account [13], it includes elastic
effects inherently. Thus it allows us to simulate, for example,
features of crack propagation [8] and plasticity [7, 14] from
the atomic to the microscale. To model the elastic behavior
of different kinds of materials, the parameters of the phase-
field crystal model equation can be adjusted to match the
elastic moduli of a given experimental system. However, in
its most simplistic form, in which it is a reformulation of the
Swift–Hohenberg equation [15] with a conserved dynamics as
introduced by Elder et al [6, 7] the Poisson ratios that can be
modeled are restricted to 1/3 (in the one mode approximation).
Moreover, since in the simplistic PFC model the material is
defined by only three parameters, it is restricted with respect
to the crystal lattice structures which it can describe as well.
These are triangular symmetries in two dimensions and BCC
symmetry in three dimensions [16]. Another crystal symmetry
applying to protein crystals in a membrane could be obtained
by including higher order correlation functions [17]. Moreover,
liquid crystals have been simulated by combining the original
phase-field crystal equation with an orientational field [18].

Here we follow the above direction to extend the phase-
field to apply to a larger class of condensed matter systems
following a different route: we derive a generalized PFC model
for isotropic as well as anisotropic crystal lattice systems of
arbitrary Poisson ratios as well as condensed matter systems
built up from non-spherical units such as, for example, colloids
and liquid crystals. To this end we extend the simplest
PFC model (SPFC in the following) as, for example, given
in [6], to a conservative, anisotropic Langevin equation. We
demonstrate the capacity of our approach to contribute to the
more precise understanding of condensed matter systems built

up from non-spherical units at the atomic scale by studying
heterogeneous nucleation of ellipsoidal colloids at a wall. In
particular we address the question how (a) the orientation of
the ellipsoids, as well as (b) the interaction potential with the
wall determine the resulting contact angle.

To do so we proceed as follows. First, in section 2 of this
paper, we describe our anisotropic phase-field crystal model,
which we present here for the first time. In section 3 a brief
review of model approaches to heterogeneous nucleation as
well as to ellipsoidal colloids and the understanding gained in
this context are presented. In section 4 we then report our own
studies and the understanding we can thereby obtain for the
contact angle formation of this system. Finally, in section 5,
we put our results in a broader context and discuss the further
perspectives as well as the limitations of our approach for
nucleation studies.

2. The anisotropic phase-field crystal model

The SPFC model as derived originally in [6] is based on the
free energy functional (4) and a stochastic extension of the
equation of motion (2) for the local mass density φ given by

∂φ

∂ t
= ∇2

(
δF

δφ

)
+ η (5)

with a stochastic noise η of zero mean value and correlations
〈η(�r , t)η(�r ′, t ′)〉 = −G∇2δ(�r − �r ′)δ(t − t ′) [6]. Moreover,
q0 and ε are constant and G = 0 in the SPFC case. Thus the
equation of motion can be cast in the following form:

�φ̇ = 	([(q2
0 + 	)2 − ε]φ + φ3). (6)

As pointed out above, the crystal lattice structures
minimizing the free energy functional (4) are restricted to
constant, striped and hexagonal symmetries in two dimensions
(2D) and an additional BCC symmetry in three dimensions
(3D), as well as to a Poisson ratio 1/3 (in the one mode
approximation)—as is reasonable to simulate, for example,
copper and aluminum. However, anisotropic materials systems
might have completely different Poisson numbers, and steel
and iron, for example, have Poisson numbers in the range
(0.21–0.3). To be able to model the behavior of such
materials from the atomic to microscale within the phase-field
crystal formalism as well, an extension overcoming the above
limitations is required.

An extension of the SPFC equation meeting the above
challenge and allowing us to model materials of a wider class
of condensed matter systems and Poisson ratios, as we will
report in [20], can be obtained by replacing the Laplacian
in (4) by more general differential operators allowing spatial
anisotropy. Doing so and setting τ = −(q2

0 − ε) we arrive at
the free energy functional of an anisotropic PFC model (APFC
model in the following), which we suggest here for the first
time:

F =
∫

V

(
1

2
φ

[
−τ + ai j

∂2

∂xi∂x j

+ bi jkl
∂4

∂xi∂x j∂xk∂xl

]
φ + 1

4
cφ4

)
dr (7)
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where ai j is a symmetric matrix and bi jkl is a tensor of rank 4
with the symmetry of an elastic tensor: i ↔ j, k ↔ l, (i, j) ↔
(k, l).

The corresponding Langevin differential equation of
motion is given by

�φ̇ = 	

([
−τ + ai j

∂2

∂xi∂x j
+ bi jkl

∂4

∂xi∂x j∂xk∂xl

]
φ + cφ3

)
.

(8)
Solutions to the SPFC model are inherently solutions of

the APFC model as well.
Finding the general steady state solutions for the SPFC

respectively the APFC model involves finding solutions to:

φ̇ = 0 ↔ 	([(q2
0 + ∇2)2 − ε]φ + φ3) = 0, (9)

in the SPFC case, respectively

0 = 	

([
−τ + ai j

∂2

∂xi∂x j
+ bi jkl

∂4

∂xi∂x j∂xk∂xl

]
φ + cφ3

)

(10)
in the APFC case.

Note that the resulting model equations of our APFC
model are not rotationally invariant—just like the ones of the
famous Warren–Boettinger–McFadden model [19]. This might
cause problems when studying, for example, several grains and
issues of their orientation with respect to each other might play
an important role. We will show in a forthcoming paper how
to overcome this problem [20]. Here, however, we will restrict
our focus to the study of an individual grain.

3. Heterogeneous nucleation of ellipsoidal colloids at
a wall

Nucleation is the key event necessary to occur, so that a
liquid, which is quenched below its melting temperature,
will undergo a phase transition and freeze eventually. Thus
nucleation plays an important role in almost all aspects of
materials science [21–25], which is fully accepted across many
areas of modern surface and materials science and technology.
One reason is that a large range of material properties from
mechanical ones such as ductility and hardness to electrical
and magnetic ones such as electrical conductivity and magnetic
hardness depend largely on the specific crystalline structure
that forms in nucleation and subsequent initial microstructure
growth. In the study of nucleation, one distinguishes between
homogeneous and heterogeneous nucleation. The first occurs
in an idealized pure material, the second in ‘impure’ materials,
where walls or seed particles usually substantially larger
than the atomic scale facilitate nucleation by reducing the
energetic barrier for the phase transition to occur. Despite
its technological importance, in particular heterogeneous
nucleation is poorly understood due to difficulties in describing
the interaction between the foreign matter and the solidifying
melt.

The development of physically relevant models for this
scenario depends on key parameters in the interaction region,
which are experimentally difficult to access in the classical
structure material systems such as metals due to experimental

limitations arising, for example, from non-transmittance of
optical light. This is one reason why lately colloids,
which have fewer experimental restrictions, could establish
themselves more and more as important model systems for
phase transition scenarios in crystalline as well as other kinds
of granular matter. Another reason is that from the point
of view of theory they allow us to reduce the problem of
evaluating a many-body partition function arising in their MD
treatment to a slightly simpler, geometrical problem, namely
the evaluation of entropic contributions only. Thus phase
transition scenarios in hard ellipsoidal colloids have already
been addressed by Monte Carlo simulations before, first by
Frenkel and Mulder [26]. Since then the focus has been on
the nematic to isotropic-nematic transition [27–29], and biaxial
hard ellipsoids [30, 31]. The high density phase of these
ellipsoidal systems, a crucial basis for addressing nucleation,
has only been studied more recently in [32]. Here we continue
along that line and introduce the phase-field crystal method as
a new method to study this class of systems, with the advantage
outlined above, i.e. an increased computational capacity to
carry out computer simulations of longer time intervals and
larger system sizes due to operating on atomic length scales
but diffusive timescales. This allows us to access the question
of how (a) the orientation of the ellipsoids, as well as (b)
the interaction potential with the wall determine the resulting
contact angle, and thereby contribute to a more detailed
understanding of heterogeneous nucleation in atomistically
anisotropic condensed matter material systems in general. Due
to the direct experimental accessibility of such systematics
as well as the contact angles as such in colloids [36], this
bears the potential to gain new insight into the interaction
potential between the nucleus and wall and its appropriate
formulation in a continuum model formalism via comparison
with experiments.

4. Numerical studies and interpretation

The initial conditions for the studies which we report in the
following are a rectangular domain on one side of which we
place the wall and initialize the nucleus as a half sphere on top
of it. As boundary conditions, we set periodic to the left and
right and no boundary condition at the top. As, dimensionless,
constants for τ , a, b, c according to equation (8) we chose:
� = 1, τ = −3/4, a11 = a22 = 2, a12 = −0.4, b1111 =
b2222 = b1122 = 1, b1212 = 0, b1112 = −0.2 and c = 1.

From an atomistic point this does not describe the situation
fully, since inside the sphere the ellipsoids can take different
orientations with respect to the wall. We vary their initial
orientation in different simulation runs. We then let the sphere
evolve according to equation (8) and measure the contact angle
once it becomes stationary. Additionally we study different
boundary conditions at the wall to contribute to the open issue
of finding consistent descriptions for the substrate–nucleus
interaction. An investigation of this kind has also been carried
out in [33], however with a phase-field rather than a phase-field
crystal model, which resolves the nucleus solely as one phase,
i.e. a single nano-structural particle without inner structure at
the atomic scale.

3
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Figure 1. Resulting morphologies using the ‘hard wall’ boundary condition for different orientations of the nucleus.

Figure 2. Resulting contact angles using the ‘hard wall’ boundary condition for different orientations of the nucleus.

The first boundary condition we tested in our studies
corresponds formally to model B of [33], i.e. we set φ =
const, with the constant corresponding to φmax, i.e. a state of
highest atomic density. Figure 1 gives an impression of the
stationary nucleus morphologies we obtain with this boundary
condition describing a ‘hard wall’ interaction potential for
different initial orientations of the ellipsoids with respect to the
wall. The orientation of the ellipsoids to the wall is denoted
by θ , the contact angles at the left-hand and the right-hand
side by γ1 and γ2 respectively. The result of our simulations
implying this boundary condition, investigating systematically
the effect of different initial orientations of the ellipsoids with
respect to the wall, are given in figure 2. Here the left diagram
depicts the resulting contact angles to the left and the right
diagram the ones to the right of the nuclei in figure 1. We
can see that the contact angle depends piecewise linear on the
orientation. The slope of the curve changes whenever a new
facet occurs. This corresponds to the morphologies which
arise: as shown in figure 1 the nucleus becomes facetted,
i.e. due to the ‘hard wall’ interaction with the wall no further
modification from the shape it would take in the volume away
from the wall arises. Interestingly this is observed for model A
rather than model B in the phase-field studies of [33] (except
that there the nucleus is spherical not facetted). This difference
can be understood from the different kinds of conservation
assumptions underlying the phase-field and the phase-field
crystal approach [20].

The ‘hard wall’ interaction with the above morphological
results is not a realistic description for a lot of nucleation
scenarios known for condensed matter systems, such as
wetting transitions at a foreign wall. In the phase-field model
of [33] it is possible to formulate an interaction of the nucleus
with an external wall able to recover features of those scenarios
based on ideas following Cahn [34] by imposing an ‘interface
function’ (see equations (9), (10), (11) and (13) of [33]). These
ideas cannot directly be transferred to the APFC model, since
the APFC model does not inherently include an interfacial
function. This shortcoming can be overcome in two ways,
which we will present in [20]. Here we will focus on a
more ad hoc formulation guided by an idea of main physical
mechanisms to recover in more realistic systems. These are
surface tension effects having their origin in (a) adhesive and
(b) capillary forces as important driving forces for the nucleus’
morphological evolution at the wall.

To realize (a) we carried out additional sets of simulations,
in which we chose the following form for the boundary
condition at the wall:

φ = (φmin + φliq/w)/(1 + 1/w), (11)

where φmin represents the state of smallest atomic density, and
φliq denotes the atomic density in the unordered, i.e. liquid,
system. w is a parameter, which can be understood as an
interaction strength.

4



J. Phys.: Condens. Matter 21 (2009) 464110 R Prieler et al

Figure 3. Typical structure of the nucleus using the boundary condition of equation (11) (left), as well as the resulting contact angles γ1 and
γ2 for w = 1 and different orientations θ of the nucleus (right).

Figure 4. Resulting contact angles γ1 and γ2 for different orientations θ of the nucleus and different ratios w1:w2. On the left, the upper two
curves present simulations for w1 = 0.5 and w2 = 3, the two lower curves for w1 = 1 and w2 = 6. For each set the contact angles to the left
of the nucleus (given be the lines for γ1) and to the right of the nucleus (γ2) are plotted. The diagram to the right shows an analogous plot for a
ratio w1:w2 = 1 : 20 and w1 = 0.1 and w2 = 2 (upper curves), as well as w1 = 0.2 and w2 = 40 (lower curves).

Figure 5. Typical resulting morphologies for different ratios of w1:w2:w1:w2 = 1:6 (left) and w1:w2 = 1:20 (right).

Moreover, to realize (b) we set w to a higher value w2

in the contact angle region compared to a lower value of w1

in the remaining ‘interior’ part of the wall. Several ratios of
w1 and w2 were investigated. For each ratio we varied the
basic interaction strength as well. An impression of the nuclei
morphologies resulting from this approach can be obtained
from figure 5. The results of these studies are summarized in
figure 4. They allow the following conclusions.

(i) Comparing the diagram at the right-hand side of figure 3
with the ones in figure 4 we can see that the realization
of capillary forces as described above results in smaller
contact angles. Moreover, the contact angle values for
different orientations have smaller fluctuations from a
mean value than without realization of capillary forces.

(ii) The larger the interaction strength, the smaller the contact
angle. However, there appears to be a saturation of that

effect: values of w2 = 40 result in similar contact angles
to values of w2 = 6.

(iii) It appears that moderate ratios of w1 to w2 result in contact
angle values which for different orientations fluctuate least
around a mean value. However, this needs to be checked
by the study of still different ratios. What is obvious,
though, from figure 4 is that an interaction potential
realizing adhesive as well as capillary forces results in
contact angles that lose their obvious dependence on the
orientation of the ellipsoids with respect to the wall, which
is obvious for the ‘hard wall’ interaction (see figure 3,
right-hand side).

The final conclusion can be checked quite easily exper-
imentally. A more quantitative comparison to experimental
contact angles would even allow us to evaluate the descrip-
tion of the interaction potential between substrate and nucleus

5
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which we formulate in equation (11). This would contribute to
this still difficult issue in heterogeneous nucleation theory. Fur-
ther insight can also be expected from the further development
of this approach such that it will also include surface energies,
as we will show in more detail in [20] and discuss from the
point of view of its perspectives in section 5.

5. Summary and outlook

In this paper we have introduced for the first time an
anisotropic version of the simplest phase-field crystal model
(see e.g. [6]), which we termed the APFC model. The model
allows us to simulate isotropic as well as anisotropic crystal
lattice systems of arbitrary Poisson ratios as well as condensed
matter systems built up from non-spherical units such as, for
example, colloids and liquid crystals. In this paper we applied
this to the heterogeneous nucleation of ellipsoids at a wall. The
particular focus of our study was concerned with the question
of how (a) the orientation of the ellipsoids as well as (b)
the interaction potential with the wall determine the resulting
contact angle. Our studies reveal that:

(i) the realization of capillary forces as described above
results in smaller contact angles and, moreover, the
contact angle values for different orientations have smaller
fluctuations from a mean value than without the realization
of capillary forces;

(ii) the larger the interaction strength, the smaller the contact
angle;

(iii) an interaction potential realizing adhesive as well as
capillary forces results in contact angles that lose their
obvious dependence on the orientation of the ellipsoids
with respect to the wall, which is obvious for the ‘hard
wall’ interaction (see figure 3, right-hand side).

At this point our model still does not include a notion
of surface energies, thus it neither allows for a comparison
with or a validation of important experimentally accessible
mesoscopic parameters, nor does it allow us to make use
of important continuum model concepts already developed
in the field (see e.g. [33, 34] and references therein). This
shortcoming can be overcome in two ways, as we will
demonstrate in [20]. One of these two ways is based on a
renormalization group approach as already used previously
in the context of phase-field crystal modeling [35]. With
these upcoming extensions the phase-field crystal model
presented here appears to be a very promising approach
to address problems of heterogeneous nucleation in general
condensed matter systems as we did here, since it provides
a comprehensive scale-bridging view: taking into account
that it can be parametrized with density functional theory
calculations [8, 9], which themselves can obtain input
with respect to specific potential formulations from MD
simulations, it provides a very quantitative description of the
atomic processes underlying, for example, nucleation, at the
same time providing a link to continuum theoretical concepts
as well as to the possibilities of experimental validation at the
mesoscopic scale. In particular, with the anisotropic extension
of the phase-field crystal approach, which we propose here, and

the resulting capacity to simulate any kind of colloidal system,
it bears the potential to gain—via comparison to experiments—
new insight into the interaction potential between the nucleus
and wall and its appropriate formulation in continuum models
due to the direct experimental accessibility of the contact
angles in such colloidal systems [36].
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